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We discuss the problem of reconstructing the drift coefficient of a diffusion from 
the knowledge of the transition probabilities outside a given bounded region in 
Ra d> 1. We also give an interpretation of the solution of this inverse problem 
in the framework of stochastic mechanics. 
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1. I N T R O D U C T I O N  

The study of stochastic differential equat ions with given coefficients is a 
well-developed subject from the point  of  view of theory (see, e.g., refs. 6, 7, 
14, 20 and 25) as well as of  applications (see, e.g., refs. 1, 8, 17, and 18). In 
this theory, the "direct" problem of determining properties of  the solution 
in terms of the given coefficients is handled. The corresponding "inverse" 
problem of determining the coefficients from the knowledge of  the process 
in a given region of state space has not  been considered, to our  knowledge. 
For  some other kinds of inverse problems, such as the determination of 
parameters  in the sense of statistics, see, however, e.g., refs. 5, 10, 11, 12, 
and 16. Inverse problems of the former type are on the other hand a well- 
studied subject in the theory of ordinary differential equations (without 
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stochastic terms) (see, e.g., refs. 19 and 22). It is therefore natural to try to 
extend this study to the case of stochastic systems. Often in fact it is only 
possible to observe a process outside some given region and it is natural to 
ask whether this knowledge is enough to determine all local characteristics 
of the process. Incidentally, we remark that this problem is quite different 
from, e.g., extrapolation, filtering, or prediction problems (see, e.g., 
refs. 3, 11, and 26), which involve knowledge of the process for a given 
interval of time. There is also another context in which the above inverse 
problem arises. In the past decade the Euclidean reformulation of quantum 
theory as a stochastic process has become an indispensable tool for the 
solution of important problems ranging from mathematical physics to 
elementary particle phenomenology. These successes of Euclidean quantum 
theory have inevitably led to questions about its fundamental nature--is 
there something physical to the stuff that diffuses according to the laws of 
Euclidean quantum theory? In particular: is there a scattering theory for 
this stuff, and what does it have to do with quantum scattering theory? 
There are at this time partial answers. (9'17'23) Here we focus on the 
stochastic mechanical ground-state process (in the sense of, e.g., refs. 4, 17, 
and 24). We can reconstruct the quantum theory, e.g., from its invariant 
density, (8'17) but its asymptotic behavior, in regions far away from the 
scattering center, tells us little--at best the scattering length--about the 
scattering of the quantum particles. (2) A related question which is con- 
nected with the general inverse problem mentioned above is the following. 
Assume that we observe the sample paths of the ground-state process only 
outside a bounded domain A: can we reconstruct the process inside A? We 
can think of observing Brownian motion under a microscope where a black 
spot obscures a part A of the field of vision. We observe the sample paths 
as they vanish and reappear from under the black spot and would like to 
learn from these observations how the Brownian particles behave in the 
hidden region, i.e., what obstacles (forces, drifts) they encounter there. 
More precisely, this problem, which is the one we mentioned at the 
beginning, can be formulated as follows. 

Let us suppose that we know the process: Xt is a solution of the 
stochastic differential equation dXt =/~(Xt, t)dt+ dWt for all t such that 
Xt(-)~A C= - Nd\A. Our goal is to reconstruct the drift field /? which is 
responsible for the diffusion. In the case of stochastic mechanics, it is a 
gradient field, i.e.,/~ = Vq), where q) can be deduced easily from the solution 
of the Schr6dinger equation. In the stationary case the corresponding 
potential V is given by 2V= A~0 + IVq)] 2. Hence in this case the problem is 
as follows: Let A be any bounded open domain in Nd and let V: R J ~ N be 
a potential such that supp Vc~ A r  Is it possible to reconstruct V acting 
in A from observations on the solution process X, made only in Rd\A? 
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In this paper we give a solution of this inverse problem in the case 
d >  1. In Section2 we give a representation formula for the transition 
probabilities of the process. In Section 3 we use this representation for 
determining the local characteristics of the process. 

2. A R E P R E S E N T A T I O N  F O R M U L A  FOR THE T R A N S I T I O N  
P R O B A B I L I T I E S  

Let X, be a solution of the stochastic differential equation (in the Ito 
sense) 

d X  t = fi(X,) dt + dW, ,  X, = x (2.1) 

with W, a Brownian motion R d starting at 0. We assume that /3 is 
continuously differentiable. Then the SDE (2.1) has a pathwise unique 
solution. We assume, moreover, that the solution to (2.1) has no explosion. 

Let OeC~(R a) such that O ( z ) = l  for z E R  d with Izl~<l, and let 
@,,(z) = @(n-lz). Also let us consider the following SDE: 

l z  n n dX, = ~, . (x ,  ) ~(X';) d t+  dW,,  X,  = x (2.2) 

Then this SDE (2.2) also has a pathwise unique solution. Therefore by the 
Cameron Mart in-Maruyama-Girsanov formula we have 

E[N(X,) ,  IIXII, ~< n] 

= E [ f ( X T ) ,  IIX'll, ~<n] 

= E~ f ( W , ) e x p [ f ]  ~ , , ( W s ) f l ( W s ) d W  , 

1 i tp, ,(w,)B(Ws)12ds ilWll<~ n 
2 o  

= E x  f (W, )exp  f l ( W s ) d W s - ~  Ifl(W,)i2 ds , [IWJl,~<n 

for f e C o ( R ~ ) ,  where the expectation Ex is with respect to Brownian 
motion starting from x at time 0, and we denote maxo_<s~, Ig(s)l by IIg]l,. 

So we have 

{ I;: ';: ]} Ex exp f l(Ws) d W s - - ~  IB(W,)i2ds --1, t~>0 
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E[f(X,) ] = Ex { f( W,) exp l fo fl( Ws) dW,--~ fo [fl( Ws){2 ds]} 

for any f ~ Co(Ra). 

Assume now that fl is a gradient field, i.e., f i ( . )=V~o(. )  for some C 2 
function ~o and that  2 V = A q ~ +  ]V~o] 2 is lower bounded. Then, by using 
Ito's formula, we have 

E[f(Xt)]=E~If(W~)exp{[~P(W~)-(p(Wo)]-f~V(Ws)ds}] 

So, setting 

\-f~tj(1 "~d/2 exp ( ~1 yl2 ) p,(x, y) - {exp[cp(y) - (p(x)] } \ - Ix - 

XUo~;{exp[-foV(Ws) ds]} (2.3) 

for each t > 0, x, y e R d (where the expectation is with respect to a Brow- 
nian bridge starting at time 0 from x and ending at time t in y), it is easy 
to see that  p,(x, y) is continuous in x and y, and 

E[f(X,)] = f p~(x, y) f(y) dy. (2.4) 

Let 7~y(S), s e [0, t] be the straight line from x to y, i.e., 

s 
Z~y(s) = t (y - x) + x (2.5) 

Then we have 

lim t log ,,v �9 Po:x[llW->~,.vl[r>~]<O 
tl.o 

for any e > 0. 
Also, we have, if khW-7 ..... ]]~<e, that  

f•V(Ws) ds - f~ V(~x,~,) ds 

~< t .max{]V(yx,  y (S) ) -  V(Tx v(s) +z)i;s~ [0, t], z e  R J, Izl ~<e 
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Therefore, 

limt+o ~'logE~[~ {exp l -  f~ V(Ws) dsl}- f~ V(s(y-x)+x)ds 

= li--m,l o ~.logE~[~[{exp[-fs y(s))ds}] 

~< max ( ( - i n f  V+ max V(yx.v(s)) 
k O<~s<~ t 

1 I v  1 ,~ 
x lira,, o t log Po3~[ [r W -  7 ..... ]j, > e] lira,, o t log E~j,- x 

x {expI I~ V(W~.)ds-f~ V(?xv)ds l, ']W-Tx.~",<~e}) 

<~ max{lg(s(y-x)+ x)-  g(s(y-x)+ x + z)]; 
s e  [0, 1], zeR d, Iz] <<.~} 

for any e > 0. Since the last term converges to zero as e $ 0, we ~ee that 

logE~[x exp - V(W~)ds =t V(s(y-x)+x)ds+o(t) 

Thus we have the following. 

T h e o r e m  2.1. Let ~o e C 2 and let 2 V =  Aep + [V~012 be lower boun- 
ded. Then the transition probability density pt(x, y) of the solution to 

dX, = Vq)(Xt) dt + dW, 
is continuous and given by 

\}--~t] ( 1 ~a/2 exp ( ~1 y12 ) p,(x, y) = {exp[qg(y) - ~0(x)] } \ - [x - 

x Ea[~ {exp l -  f] V(W~) ds]} 

the expectation being with respect to the Brownian bridge starting at t = 0 
in x and ending at time t in y. 

Moreover, for t + 0 we have 

_(1"]  a/2 1 yl2 ) p,(x, y) -- \2~-~tTCtJ exp ( - -  ~ Ix - -  

xexp [(p(y)--ep(x)]--t V(s(y--x)+x)ds+o(t) 

822/57/1-2-23 
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In Section 3 we shall use the above estimate in the following way. Let A 
be a bounded domain in R d with smooth boundary. Suppose we know 
p,(x, y) for all x, y~OA and all 0 < t <  + ~ .  Then we know 
q~(y) - cp(x) Vx, y ~ 3A, since 

lira p,(x, y )  = exp[~p(y)  - c?(x)]  (2.6) 
,,o p~ y) 

with 

p~ y)=(2zct) -a/2 exp ( Ix2tY[ 2) 

Also, we know ~o 1 V(s(y - x) + x) ds Vx, y E OA, since 

,~o t \pO(x,  y)  - [ ~ ( y ) - ~ ( x ) ]  = -f0 V ( ~ ( y - x ) + x ) d ~  

3. RECONSTRUCTION OF THE DRIFT AND OF THE 
INTERACTION POTENTIAL 

Let (p and V be as in Section 2. As we saw at the end of Section 2, the 
knowledge of ps(x, y), Vx, y ~ ~A and all 0 ~< s < t, yields in particular 

F(x ,y)=f~ V ( x + ( y - x ) s ) d s ,  x ,y~OA 

We shall remark that this is equivalent to the knowledge of 

G(a,b)=_f ZA(a+sb) V(a+sb)ds (3.1) 

for all a, b ~ Ed, b # O. In fact, 

G(a, b ) =  f~sla+s~A ~ V(a + sb) ds= F(x, y) (3.2) 

with x, y the points where the straight line [a + sb, s ~ ~+ ] intersects •A. 
We shall now show that this also implies the knowledge of V inside A, at 
least for d >  1. In fact, let us consider the Fourier transform of VA -= Z~ V, 
i.e., 

VA(p)=--(2ZC) -d/2 :~(ae-~ dx' p ~  (3.3) 
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Let d~> 2 and set, for p r 0, 

Hp= {X+NJlp .x=O} 

We can then write, by the Fubini theorem, using the decomposition 

~ J =  Hp |  {p} =lip |  { t~, t ~ ~, 15 = p/[ p[ } 

and the change of coordinates 

with zeHp,  t lJe{p} , t~N,  
becomes dy dt, 

x e  ~ - - ,  (z, t/~) 

remarking that the volume measure dx 

Using the fact that p . y =  0, we obtain 

VA(p)~-(2Tc)--d/2f . it'p[IfHp~A(tp| V(~])| (3.5) 

But 

flip t" v(t~ | z) dz y,A(t~ | z) v(t~@z) dz= JoA 

with DA-- {z~Hp, t f i |  But 

j~. v(tp| A V(t~O| 

=fD V(ItO@SIZI@ "'" (~Sd-lZd--1)ds1 "''dSd-I A 

(3.6) 

(3.7) 

is a known function of p, for all fixed p ~ N, p ~ 0. 

VA(p) = (2~) U/'2 fn e-itlpIF(t, 1~) dt 

with ~ ~- z/lzt- 
Using the above observation with respect to the s e_ 1 integration and 

then performing successively the Sd_ 2,..., Sl integrations, we see that (3.7) is 
a known function F(t,/~) [-determined by the knowledge of p,(x, y), 
Vx, y~c~A, O<~s~ t]. Hence, inserting this into (3.5), we get that 
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By the inverse Fourier transformation we then get VA(X ) for all x ENd, 
as determined by the above knowledge of p,(x, y). We formulate these 
results in the following proposition. 

P r o p o s i t i o n  3.1. Let A be a bounded domain of E d, d >  1, with 
smooth boundary ~?A. Let p,(x, y) be the transition probability density for 
a diffusion process with unit diffusion coefficient and drift given by fl = V~0, 
satisfying the regularity conditions as in Section2. Then from the 
knowledge of ps(x, y), Vx, y e t?A, 0 ~< s ~< t, for some t > O, we get uniquely 
q~(y)-~o(x), Vx, yEOA [by (2.6)] and 2 V ( x ) - A q ) ( x ) +  [V~0(X)l 2 for all 
x e A, by the Fourier transform method given above. 

We finally remark that this proposition permits us to determine 
the drift /~(x) for all x eA.  In fact, let us fix XoeC?A. Define ~(x)--- 
exp[~0(x) - ~O(Xo) ], Vx E 0A. Then we have 

Aq~(x) = [A(p(x) + IV(p(x)l 2 ] 45(x) = 2r (x)  q~(x) 

for all x e A (by the definition of V). 
By Proposition 3.1, p,(x, y), O<~s<<, t, x, yet?A, determines qS(x)for 

x E 0A and V(x) for x e A. 
The boundary value problem 

AOS(x)= 2V(x) q~(x), x e A 

~ (x )  = e 'p(x)- ~(x0), x e 8A 

has, however, a unique solution, under our assumptions, which yields qS(x) 
for all x e A. Hence we have the following result. 

T h e o r e m  3.2. Let A be a bounded domain of RJ, d >  1, with 
smooth boundary. Let pt(x, y) be the transition probability density of a dif- 
fusion process with unit diffusion coefficient and drift being a gradient field 
fl = V~0 satisfying regularity conditions as in Section 2. Then fl(x), x ~ A, is 
uniquely determined by the knowledge of p,(x, y) for x, y E 3A. 

Remark 1. Our method covers only the case d >  1. Results for the 
case d =  1 should, however, be obtainable by other methods, using, e.g., 
ref. 15 or a discrete approximation. 

Remark 2. In recent years, ideas and methods of the theory of 
stochastic processes have been used quite extensively in the study of quan- 
tum mechanics. In turn, the theory of stochastic processes has received 
many stimulating impulses from quantum theory. See, e.g., refs. 1, 2, 4, 8, 
9, 13, 17, 21, 24 and 27. As mentioned in the introduction, the problem we 
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discuss in this paper has a very natural physical application through the 
interpretation of quantum mechanics as stochastic mechanics (see, e.g., 
refs. 8 and 17). 
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